3.235 \(\int \frac {(g x)^m (d+e x)}{(d^2-e^2 x^2)^{7/2}} \, dx\)

Optimal. Leaf size=124 \[ \frac {e (g x)^{m+2} \, _2F_1\left (1,\frac {m-3}{2};\frac {m+4}{2};\frac {e^2 x^2}{d^2}\right )}{d^2 g^2 (m+2) \left (d^2-e^2 x^2\right )^{5/2}}+\frac {(g x)^{m+1} \, _2F_1\left (1,\frac {m-4}{2};\frac {m+3}{2};\frac {e^2 x^2}{d^2}\right )}{d g (m+1) \left (d^2-e^2 x^2\right )^{5/2}} \]

[Out]

(g*x)^(1+m)*hypergeom([1, -2+1/2*m],[3/2+1/2*m],e^2*x^2/d^2)/d/g/(1+m)/(-e^2*x^2+d^2)^(5/2)+e*(g*x)^(2+m)*hype
rgeom([1, -3/2+1/2*m],[2+1/2*m],e^2*x^2/d^2)/d^2/g^2/(2+m)/(-e^2*x^2+d^2)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 162, normalized size of antiderivative = 1.31, number of steps used = 5, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {808, 365, 364} \[ \frac {e \sqrt {1-\frac {e^2 x^2}{d^2}} (g x)^{m+2} \, _2F_1\left (\frac {7}{2},\frac {m+2}{2};\frac {m+4}{2};\frac {e^2 x^2}{d^2}\right )}{d^6 g^2 (m+2) \sqrt {d^2-e^2 x^2}}+\frac {\sqrt {1-\frac {e^2 x^2}{d^2}} (g x)^{m+1} \, _2F_1\left (\frac {7}{2},\frac {m+1}{2};\frac {m+3}{2};\frac {e^2 x^2}{d^2}\right )}{d^5 g (m+1) \sqrt {d^2-e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((g*x)^m*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x]

[Out]

((g*x)^(1 + m)*Sqrt[1 - (e^2*x^2)/d^2]*Hypergeometric2F1[7/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2])/(d^5*g*(1
+ m)*Sqrt[d^2 - e^2*x^2]) + (e*(g*x)^(2 + m)*Sqrt[1 - (e^2*x^2)/d^2]*Hypergeometric2F1[7/2, (2 + m)/2, (4 + m)
/2, (e^2*x^2)/d^2])/(d^6*g^2*(2 + m)*Sqrt[d^2 - e^2*x^2])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 808

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {(g x)^m (d+e x)}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx &=d \int \frac {(g x)^m}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx+\frac {e \int \frac {(g x)^{1+m}}{\left (d^2-e^2 x^2\right )^{7/2}} \, dx}{g}\\ &=\frac {\sqrt {1-\frac {e^2 x^2}{d^2}} \int \frac {(g x)^m}{\left (1-\frac {e^2 x^2}{d^2}\right )^{7/2}} \, dx}{d^5 \sqrt {d^2-e^2 x^2}}+\frac {\left (e \sqrt {1-\frac {e^2 x^2}{d^2}}\right ) \int \frac {(g x)^{1+m}}{\left (1-\frac {e^2 x^2}{d^2}\right )^{7/2}} \, dx}{d^6 g \sqrt {d^2-e^2 x^2}}\\ &=\frac {(g x)^{1+m} \sqrt {1-\frac {e^2 x^2}{d^2}} \, _2F_1\left (\frac {7}{2},\frac {1+m}{2};\frac {3+m}{2};\frac {e^2 x^2}{d^2}\right )}{d^5 g (1+m) \sqrt {d^2-e^2 x^2}}+\frac {e (g x)^{2+m} \sqrt {1-\frac {e^2 x^2}{d^2}} \, _2F_1\left (\frac {7}{2},\frac {2+m}{2};\frac {4+m}{2};\frac {e^2 x^2}{d^2}\right )}{d^6 g^2 (2+m) \sqrt {d^2-e^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 121, normalized size = 0.98 \[ \frac {x \sqrt {1-\frac {e^2 x^2}{d^2}} (g x)^m \left (d (m+2) \, _2F_1\left (\frac {7}{2},\frac {m+1}{2};\frac {m+3}{2};\frac {e^2 x^2}{d^2}\right )+e (m+1) x \, _2F_1\left (\frac {7}{2},\frac {m+2}{2};\frac {m+4}{2};\frac {e^2 x^2}{d^2}\right )\right )}{d^6 (m+1) (m+2) \sqrt {d^2-e^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((g*x)^m*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x]

[Out]

(x*(g*x)^m*Sqrt[1 - (e^2*x^2)/d^2]*(d*(2 + m)*Hypergeometric2F1[7/2, (1 + m)/2, (3 + m)/2, (e^2*x^2)/d^2] + e*
(1 + m)*x*Hypergeometric2F1[7/2, (2 + m)/2, (4 + m)/2, (e^2*x^2)/d^2]))/(d^6*(1 + m)*(2 + m)*Sqrt[d^2 - e^2*x^
2])

________________________________________________________________________________________

fricas [F]  time = 0.85, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-e^{2} x^{2} + d^{2}} \left (g x\right )^{m}}{e^{7} x^{7} - d e^{6} x^{6} - 3 \, d^{2} e^{5} x^{5} + 3 \, d^{3} e^{4} x^{4} + 3 \, d^{4} e^{3} x^{3} - 3 \, d^{5} e^{2} x^{2} - d^{6} e x + d^{7}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="fricas")

[Out]

integral(sqrt(-e^2*x^2 + d^2)*(g*x)^m/(e^7*x^7 - d*e^6*x^6 - 3*d^2*e^5*x^5 + 3*d^3*e^4*x^4 + 3*d^4*e^3*x^3 - 3
*d^5*e^2*x^2 - d^6*e*x + d^7), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )} \left (g x\right )^{m}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

[Out]

integrate((e*x + d)*(g*x)^m/(-e^2*x^2 + d^2)^(7/2), x)

________________________________________________________________________________________

maple [F]  time = 0.02, size = 0, normalized size = 0.00 \[ \int \frac {\left (e x +d \right ) \left (g x \right )^{m}}{\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*x)^m*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x)

[Out]

int((g*x)^m*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (e x + d\right )} \left (g x\right )^{m}}{{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)^m*(e*x+d)/(-e^2*x^2+d^2)^(7/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)*(g*x)^m/(-e^2*x^2 + d^2)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (g\,x\right )}^m\,\left (d+e\,x\right )}{{\left (d^2-e^2\,x^2\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((g*x)^m*(d + e*x))/(d^2 - e^2*x^2)^(7/2),x)

[Out]

int(((g*x)^m*(d + e*x))/(d^2 - e^2*x^2)^(7/2), x)

________________________________________________________________________________________

sympy [C]  time = 63.25, size = 117, normalized size = 0.94 \[ \frac {g^{m} x x^{m} \Gamma \left (\frac {m}{2} + \frac {1}{2}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{2}, \frac {m}{2} + \frac {1}{2} \\ \frac {m}{2} + \frac {3}{2} \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 d^{6} \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} + \frac {e g^{m} x^{2} x^{m} \Gamma \left (\frac {m}{2} + 1\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {7}{2}, \frac {m}{2} + 1 \\ \frac {m}{2} + 2 \end {matrix}\middle | {\frac {e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{2 d^{7} \Gamma \left (\frac {m}{2} + 2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*x)**m*(e*x+d)/(-e**2*x**2+d**2)**(7/2),x)

[Out]

g**m*x*x**m*gamma(m/2 + 1/2)*hyper((7/2, m/2 + 1/2), (m/2 + 3/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/(2*d**6*g
amma(m/2 + 3/2)) + e*g**m*x**2*x**m*gamma(m/2 + 1)*hyper((7/2, m/2 + 1), (m/2 + 2,), e**2*x**2*exp_polar(2*I*p
i)/d**2)/(2*d**7*gamma(m/2 + 2))

________________________________________________________________________________________